
J
H
E
P
1
0
(
2
0
0
7
)
0
1
1

Published by Institute of Physics Publishing for SISSA

Received: August 1, 2007

Revised: September 14, 2007

Accepted: September 28, 2007

Published: October 2, 2007

Low energy supersymmetry from non-geometry

Eran Palti

Rudulf Peierls centre for Theoretical Physics, University of Oxford,

Keble Road, Oxford, U.K.

E-mail: palti@thphys.ox.ac.uk

Abstract: We study a class of flux compactifications that have all the moduli stabilised,

a high (GUT) string scale and a low (TeV) gravitino mass that is generated dynam-

ically. These non-geometric compactifications correspond to type II string theories on

SU(3) × SU(3) structure orientifolds. The resulting superpotentials admit, excluding non-

perturbative effects, supersymmetric Minkowski vacua with any number of moduli sta-

bilised. We argue that non-perturbative effects are present and introduce terms in the

superpotential that are exponentially suppressed by the same moduli that appear per-

turbatively. These deform the supersymmetric Minkowski vacua to supersymmetric AdS

vacua with an exponentially small gravitino mass. The resulting vacua allow for low scale

supersymmetry breaking which can be realised by a number of mechanisms.
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1. Introduction

Low energy (TeV) supersymmetry is an attractive solution to the hierarchy problem. Al-

though string theory naturally incorporates supersymmetry at the string scale it is still

not clear why it should only be broken at a much lower scale. The success in moduli sta-

bilisation make this question one that can be studied concretely. A particularly attractive

idea is that supersymmetry is broken at a dynamically low scale [1]. In terms of moduli

stabilisation a necessary condition for this is that the moduli are fixed at a point with a

dynamically low gravitino mass. Consider the KKLT set up where the Standard model is
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realised on some brane which may be located in a warped region [2]. Then the gravitino

mass and the string scale are schematically given by [3]1

m 3
2
∼ Mp eA W0

V , ms ∼
Mp eA

V 1
2

, (1.1)

where Mp is the Planck mass, W0 is the integrated out complex structure moduli superpo-

tential, eA is the warp factor at the brane, and V is the Calabi-Yau (CY) volume. There

are realisations of scenarios where either the volume is exponentially large [4, 5] or where

the warping is exponentially small [6] both leading to a dynamically low gravitino mass.

However the scenarios also imply an intermediate and low string scale respectively. If we

wish to keep a high string scale then a simple solution is to take W0 hierarchically small.

This scenario already has a realisation in string theory by fine tuning the string scale num-

bers in W0 to cancel to hierarchical accuracy. The aim of this paper is to explore an idea

for generating a dynamically low W0.

The obvious way to get a dynamically low W0 is to find vacua where W vanishes up

to non-perturbative effects that are exponentially suppressed. This requires two important

ingredients. The first is that in the vacuum the superpotential vanishes (including all the

perturbative corrections to it that arise away from the large complex-structure and large

volume limit). The second is that the moduli appearing in the exponential non-perturbative

terms are already perturbatively fixed at some, ideally parametrically controlled, large

value. This is the mechanism that generates the hierarchy scale. A possible realisation of

this type of scenario has already been explored in string theory. It works as follows. We

consider type IIB string theory compactified on a CY which has a single complex-structure

modulus. We also include R-R and NS-NS flux. It was shown in [7] that it is possible to pick

the fluxes such that the complex structure modulus is fixed at the Landau-Ginzburg (LG)

point and the perturbative superpotential vanishes exactly. We further consider gaugino

condensation on a D3 brane on a singularity in the CY which induces a non-perturbative

term in the superpotential that is exponentially suppressed by the value of the dilaton.

Since the dilaton is already fixed perturbatively by the fluxes this exponential can generate

a hierarchy deforming the vacuum to one where W0 is dynamically small. The Kahler

moduli are then fixed through the usual KKLT [2] mechanism.

We now summarise some of the downfalls of this construction. The first one is that this

stops working once the CY has more than one complex-structure modulus. Attempts to im-

plement this scenario for the more generic cases of multiple complex-structure moduli [8]

have only been successful at the cost of leaving flat directions in the complex-structure

moduli space. Since we are interested in constructions where all the moduli are stabilised

this is unsatisfactory.2 Another problem is that it is completely reliant on the D3 gaugino

condensation. A phenomenological problem is that since the Kahler moduli only appear

non-perturbatively, they get fixed at values where their vacuum mass is of order the grav-

1These expressions are modified in the warped case with the volume scaling to a different power. However

since in that case we consider the volume to be of order one this is not important for illustration purposes.
2It was suggested in [8] that it may be possible to fix the remaining moduli through their appearance in

multiplying non-perturbative effects in the Kahler moduli. It would be interesting to explore this possibility.
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itino mass which implies a light moduli problem. Like the warping and large-volume

models, these constructions are only valid within a type IIB scenario meaning that we still

have no method to generate a small gravitino mass within geometric compactifications of

IIA. Finally, it was suggested in [9] that these vacua are very rare in the landscape. In this

paper we argue that the introduction of non-geometric fluxes can potentially solve all of the

aforementioned problems. Given the lack of explicit constructions of non-geometric com-

pactifications, we can only study toy models that show how the issues may be resolved. We

outline below the key changes that non-geometric fluxes imply for the geometric scenario

previously outlined.

Non-geometric fluxes are flux parameters that are associated with the failure of a

manifold to be globally patched using only geometric symmetries. Rather they correspond

to the manifold being globally patched using T-dualities. For some exploration into the

geometric interpretation of non-geometric fluxes see [10 – 21]. Although such fluxes seem

quite exotic, in many ways they should not be regarded as so any more than NS flux.

The reason is that they are precisely the mirror of NS fluxes. So that NS flux in type

IIB string theory leads by mirror symmetry to non-geometric fluxes in type IIA. Therefore

what seems exotic in one corner of M-theory is quite natural in another corner. However,

in this paper we consider theories that can not, by any dualities, be brought to a frame

where they correspond exactly to a compactification on a CY with just (RR and) NS flux.

Since we have no explicit examples we can only assume that the different fluxes can be

superposed. There is no known reason forbidding their superposition and it may be that

with better understanding of non-geometry we can develop explicit examples that realise

the toy models studied in this paper.3 The purpose of this paper is not to study whether

the superposition of non-geometric fluxes is viable or not. Rather, given that there is some

motivation for their existence, the aim is to study how their inclusion affects some of the

results that apply to the geometric constructions studied so far in the literature.

Non-geometric fluxes induce new terms in the superpotential. We discuss these in

section 2, and in section 3 we show that the new terms allow for constructions where

all the moduli are fixed, with a string scale mass, in a, up to non-perturbative effects,

supersymmetric Minkowski vacuum. This vacuum is exact in the sense of corrections away

from the large complex-structure limit in IIB or their mirror α
′

corrections in IIA. For

the form of these corrections we consider the periods to take the form of CY periods.

This is an assumption since it could be that the introduction of the non-geometric fluxes

modifies these corrections to the superpotential. However we argue that mirror symmetry

implies that such an assumptions is not completely unreasonable. For example the mirror

to a IIB CY with H-flux is non-geometric but, by mirror symmetry, the corrections to the

superpotential are of the form dictated by the CY periods. We present some arguments

that these may be the only perturbative corrections that the superpotential receives and in

3It is interesting to note that after the superposition of fluxes the theories admit vacua, found in [19],

that violate the conjecture in [22]. They are vacua where there is a flat direction in flux space where the

mass of the moduli does not reach down to the AdS scale. If it could be shown that the conjecture of [22]

holds for all solutions of string theory then this would rule these theories out. We thank K.Becker, M.Becker

and J. Walcher for discussions on this point.
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that sense the vacua are perturbatively exact.4 However it could be that there are further

perturbative corrections to the superpotential that we do not consider in this paper. In

that case it would require further study to determine if vacua that are also exact in terms

of these corrections can be constructed. For the case of the corrections studied, we discuss

two different methods by which Minkowski vacua can be realised and give two toy examples

based on CY data. We give some evidence that at least the complex-structure moduli in

IIB or the Kahler moduli in IIA may get fixed at parametrically controlled values. We also

argue that within the non-geometric landscape these type of vacua are not as rare as in

the geometric landscape.

In section 4 we study whether we expect non-perturbative effects to be present in non-

geometric compactifications. We show that strong supergravity gauging constraints and

world-volume anomalies allow for the presence of these effects. In particular they allow

for exponential terms in the superpotential that are functions of the same superfields that

appear perturbatively. This realises the mechanism of generating a hierarchy. We also

discuss how intersecting branes constructions may require axions from the closed string

sector to cancel anomalies. This requires turning off some of the fluxes to destabilise

a modulus. These kind of constructions are a type of generalised KKLT setup where

the moduli are split into a sector that is fixed perturbatively and one that is fixed non-

perturbatively. We argue that these have most of the general features of KKLT and in

particular they suffer from light moduli in the case of a low gravitino mass.

Finally in section 5 we discuss some models of supersymmetry breaking that still main-

tain a small gravitino mass. A particularly attractive mechanism for this is supersymmetry

breaking in a metastable vacuum of an open string gauge sector. Non-geometric fluxes im-

ply this sector can be realised on D3 or wrapped D6 or D7 branes. They can also fix all the

moduli at a high string scale allowing for gauge mediation without a light moduli problem.

We summarise our findings in section 6.

2. Non-geometry and Calabi-Yaus

In this section we motivate an extension to the Gukov-Vafa-Witten (GVW) IIB super-

potential that results from compactifications on CY manifolds with flux. The extension

corresponds to turning on non-geometric fluxes. We are particularly interested in the form

of the superpotential away from the large complex-structure large volume limit since we

are hoping to find perturbatively exact Minkowski vacua. The presence and effects of non-

perturbative corrections is studied in section 4. We also discuss the mirror IIA superpoten-

tial and the corrections that it receives. We begin with an introduction to non-geometric

fluxes.

The idea of non-geometry arises naturally in the context of T-duality with flux. It

was shown in [10] starting from a torus with some NS H-flux through it and performing a

T-duality we reach a torus with twisted boundary condition, a twisted torus. The twisted

torus has no H-flux through it, but instead is no longer flat but has some torsion. The

4In the case of supersymmetric Minkowski vacua corrections to the Kahler potential do not affect the

vacuum.
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torsion is parameterised in terms of metric fluxes which are the parameters that the original

H-flux has transformed into. If we now perform another T-duality we reach a ‘torus’ that

is no longer periodic up to any geometric transformation. Rather we find that it is periodic

up to T-dualities, it is a T-fold, or a non-geometric ‘manifold’ [11 – 14]. Since all we have

done is performed some T-dualities, which is a symmetry of string theory, this background

should be just as valid as a string background as the original torus with H-flux.

Consider compactifying type IIB string theory on the original torus with H-flux to

recover an effective four-dimensional theory. We may ask what happens to the effective

four-dimensional theory as we perform the T-dualities? Since type IIB and type IIA string

theories are related by a T-duality, we expect that compactifying type IIA string theory

on a twisted torus should lead to the same four-dimensional theory. This was studied in

a number of cases [10, 23 – 26] and shown to hold. It is therefore reasonable to conjecture

that the same should hold for a compactifications on a non-geometric torus. This has

lead to a number of studies of the possible effective potentials that could arise from such

compactifications [15, 16, 21]. Moduli stabilisation was subsequently studied using these

potentials where it was shown that generically all of the moduli are fixed. However we

should note that in all the cases studied, once the tadpole equations were imposed, the

vacua where all the moduli were fixed were always AdS.

Now consider CY compactifications. It has long been realised that mirror symmetry

relates the four-dimensional effective theories resulting from compactifications of type IIA

and IIB string theory on two mirror CYs. The SYZ conjecture [27] is that this symmetry

should be interpreted as performing three T-dualities in the internal CY. Mirror symmetry

has been very precisely tested. It quantitatively relates the two mirror four-dimensional

theories up to calculable perturbative and non-perturbative corrections [28 – 30]. The inter-

pretation of mirror symmetry as T-duality leads to the expectation that it should also hold

for consistent string backgrounds with flux. Consider compactifying IIB on a CY with H-

flux. Mirror symmetry is three T-dualities and we expect mirror theories corresponding to

compactifications on four different types of geometries corresponding to having flux along

zero, one, two or three of the T-duality directions. Depending on what type of H-flux we

have present the geometry of the mirror manifold changes. For the case of zero we recover

a mirror CY manifold. The case of one leg corresponds to having what is termed electric

H-flux. Then the mirror theory results from a compactification of type IIA string theory

on a manifold with torsion, the general class that preserve the N = 2 supersymmetry of

the CYs are termed manifolds with SU(3) structure and compactifications on these general

manifolds were studied in [31 – 39]. However, although we have some examples of these

type of manifolds [24 – 26, 34] a general construction along the lines of CY manifolds is still

missing. Therefore all that can be checked are general properties, in particular we do not

have a full understanding of the moduli space of these manifolds.

At this point we would like to clarify what we mean by moduli space. In a CY

compactification without flux the space of massless deformations of the CY geometry forms

the CY moduli space. Once flux is introduced some of the moduli pick up a mass and so

strictly speaking they are no longer moduli. However they still correspond to deformations

of the space that keep it CY. It is in this more general sense that we can define the moduli
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as fields that correspond to deformations of the space that keep it within its class of space.

For example if we consider the mirror to a CY with electric H-flux then this would be a

manifold with SU(3) structure and we would call the moduli space the space of deformations

that keep it within the class of manifolds with SU(3)-structure. This is a difficult space

to define and study but some progress has been made [33 – 35, 39, 18]. We can conjecture

that since mirror symmetry worked so exactly without flux it works equally well with flux

and therefore the moduli space has the same structure as the moduli space of the mirror

CY, i.e. that the four-dimensional theories are exactly the same.

The two and three leg cases are termed magnetic fluxes and these lead to non-geometric

compactifications. The question of what are the manifolds that lead to the mirror theories

has recently been partially answered in [35, 40, 18, 19] where it was argued that they

correspond to compactifications on manifolds with SU(3) × SU(3) structure. This is not

yet fully understood but it seems that these manifolds still exhibit some similarities to

CY compactifications. In this paper we therefore assume that indeed the four-dimensional

theories arising from these compactifications are exactly mirror to the CY compactifications

with H-flux. This allows us to study their superpotential using CY techniques.

So far we have not suggested any alteration to the four-dimensional theory arising

from type IIB compactifications on CY with H-flux. We have just suggested that the

same theories can be derived from compactifications on more complicated geometries but

without the presence of flux. However now we can construct new theories by turning

back on normal fluxes in the complicated geometry compactifications. We assume turning

them on is allowed, i.e. that they can be superposed on top of the non-geometric fluxes.

The assumption relies on that fact that it seems there is no reason why turning them on

should be forbidden: The effective four-dimensional theories can be derived from gener-

alised compactifications [40, 18, 19]. It is consistent with supergravity gauging [41]. Also

the newly introduced fluxes are simply symplectic rotations of the fluxes that are already

present [33, 18]. However we should keep in mind that turning them on takes us away from

the realm of compactifications that correspond to a known solution of string theory.

2.1 The four-dimensional superpotential

Consider compactifications of type IIB string theory on a CY orientifold (O3/O7) in the

presence of fluxes [42]. This results in an N = 1 theory with superfields whose scalar

components are the moduli fields and axions. We keep the notation of moduli and axions

even though, once we turn on more fluxes, the moduli are not in general flat directions

and the axions will not in general have shift symmetries. In the Kahler sector we have the

superfields

Tk = bk + itk , (2.1)

where the index k runs over the even (under the orientifold action) four-forms ω̃k ∈
H

(2,2)
+ [42]. The axions bk arise from the decomposition of the RR four-form C4 and the tk

are the Kahler moduli that come from the divisors of the CY. The complex-structure mod-

uli form superfields in themselves which we label Ua = za, where the index a = 1, . . . , h
(2,1)
− .

From here on we suppress the orientifold parity on the hodge numbers.
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Following the introduction of three-form fluxes F3 and H3 a superpotential is induced

for the complex-structure superfields. The superpotential is given by [43]

W IIB = (fΛ − φhΛ) ΠΛ . (2.2)

Here fΛ, hΛ and ΠΛ are all vectors with 2
(

h(2,1) + 1
)

entries. We henceforth suppress

contracted indices to save clutter. The flux vector f constitutes the RR fluxes and h is

the NS fluxes. They both have integer entries due to flux quantisation. The top h(2,1) + 1

entries of h are the magnetic fluxes and the bottom half are the electric fluxes. We use the

following index conventions to label the entries. The indices Λ,Σ run over the full vector

Λ = 0, . . . , 2h(2,1) + 1. These are then split into magnetic Ã, B̃ and electric A,B indices

that run over the range 0, . . . , h(2,1) and label the top half and bottom half entries of the

vector respectively. Finally there are the indices ã, b̃ and a, b which are the magnetic and

electric indices with the 0 component emitted a, ã = 1, . . . , h(2,1). Note that since they

run over the same ranges it is possible to contract electric and magnetic indices. Π is the

period vector which is composed of the periods of the holomorphic three-form Ω

Π =
(

G0, G1, . . . , Gh(2,1) , Z0, Z1, . . . , Zh(2,1)
)

=
(

GÃ, ZA
)

. (2.3)

The ZA are the electric periods. They are homogeneous functions of the h(2,1) complex-

structure moduli. The magnetic periods are functions of the electric ones GA

(

ZA
)

and

are given in terms of derivatives of a prepotential GA = ∂AF
(

ZA
)

. The prepotential is a

homogeneous function of degree two which in the large commplex-structure limit takes the

form

F
(

ZA
)

=
1

6
κabc

ZaZbZc

Z0
+ κ

(1)
ab ZaZb + κ(2)

a Z0Za +
(

Z0
)2

ξ + O
(

eiZa)

. (2.4)

Here κabc are integer constants, κ
(1)
ab and κ

(2)
a are rational, ξ is a complex number. The lead-

ing cubic term dominates in the large complex-structure limit in which case the superpo-

tential becomes a polynomial in the superfields with rational coefficients. The other terms

in the prepotential arise because of the complicated geometry of the complex-structure

moduli space. Note that the superfields are given by Ua = Za

Z0 .

Apart from inducing a superpotential for the moduli, the fluxes also back-react on

the geometry of the CY. In the IIB case this does not lead to a drastic change in the

geometry as they just induces a warp factor so that the manifold is still conformally CY.

In particular this back-reaction does not correct the superpotential [44]. Note also that

the Kahler moduli do not appear in the superpotential perturbatively, but may appear

non-perturbatively due to E3 instantons or gaugino condensation on the world-volume of

D7 branes wrapping four-cycles [45 – 47].

Consider the mirror compactification to the IIB case discussed above. The presence

of the flux vector h implies that the mirror IIA compactification is not CY. Electric fluxes

in h imply that the mirror should be on a manifold with torsion and magnetic fluxes in h

imply that the mirror should also be non-geometric. These compactifications were studied

in [40, 18, 19] where it was found that they should correspond to compactifications on

– 7 –
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orientifolds with SU(3) × SU(3) structure. The low-energy fields in such a configuration

are the Kahler superfields T a composed of the Kahler form and the NS two-form, the

complex-structure superfields Uk composed of Ω and the RR three-form C3, and the dilaton

superfield S. The mirror superpotential in the large volume limit was derived in [19] and

reads

W IIA = −1

6
f0κabcT

aT bT c +
1

2
κabcfãT

bT c + faT
a + fh(2,1)+1

−S

(

1

2
κabchãT

bT c + haT
a + hh(2,1)+1

)

. (2.5)

Here κabc denote the intersection numbers of the manifold. The various fluxes have been

labelled according to their IIB mirrors, but they do not have the same origin as on the

IIB side. The RR fluxes f still come from the RR sector which is composed of the even

RR forms. The flux hh(2,1)+1
5 does have the same origin as the IIB case and comes from

the NS three-form H. However the rest of the h fluxes are geometric and non-geometric

in origin. The fluxes ha are metric fluxes. The fluxes hã are non-geometric fluxes, denoted

as Q-fluxes in the literature.6 We have set h0 = 0. The reason for this is that these non-

geometric fluxes are highly non-geometric in that they correspond to manifolds that are not

even locally geometric. They are referred to in the literature as R-fluxes and correspond

to performing three T-dualities all along directions with H-flux. Throughout this paper we

retain only non-geometric fluxes that correspond to manifolds that are locally geometric

but only globally not so, these are the Q fluxes [15].

We are interested in comparing (2.5) with (2.2). We see that we should identify the

superfields

Ua ↔ T a , φ ↔ S . (2.6)

This corresponds to the interchange of the complex-structure and Kahler moduli. We see

that the two superpotentials match if we take the large complex-structure limit on the IIB

side. However, if mirror symmetry is to hold fully they should match at all points in the

complex-structure moduli space. Consider turning off the geometric and non-geometric h

fluxes so that on both sides of the mirror we have a CY manifold. Then mirror symmetry

should be fully implemented by including perturbative (α′) and non-perturbative (world-

sheet instanton) to the IIA superpotential. If this also holds in the presence of the h flux,

then it implies that if we know the full geometry of the complex-structure moduli space

of the CY on the IIB side then we know all these corrections to the superpotential on the

IIA side. This is highly non-trivial since the manifold we are compactifying on is non-

geometric. We have already performed a simple check of such an assumption by matching

the superpotential in the large volume large complex-structure limit.

On the type IIA side we have yet to turn on NS fluxes, which we denote ek
h(2,1)+1

.

Turning them on induces a term in the superpotential

W
′

IIA = −ek
h(2,1)+1

Uk . (2.7)

5Note that the subscript h(2,1) refers to the Hodge numbers on the IIB side.
6Schematically the geometric and non-geometric fluxes correspond to changes in the derivative operator

so that DΩ ∼ hãJ + haJ ∧ J [18, 19].
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If we now employ mirror symmetry we would reach a type IIB configuration which would

have a similar term but with the Kahler superfields, Tk. The origin of such a term is non-

geometric and so we see that, as expected, the IIA NS fluxes map to non-geometric fluxes

on the IIB side.7 The NS fluxes ek
h(2,1)+1

form a row in a matrix ek
Λ which now has the full

symplectic index. The matrix is filled with the elements ek
a, and ek

ã ( we have set ek
0 = 0

). On the IIA side the fluxes ek
a are metric fluxes which can be generated by a symplectic

rotation of the present metric fluxes ha. The fluxes ek
ã are non-geometric Q-fluxes. On the

IIB side both ek
a and ek

ã are non-geometric Q-fluxes. The fluxes induce terms in IIA

W
′′

IIA = −T ae k
a Uk − 1

2
κabcT

bT ce k
ã Uk . (2.8)

Now consider the possible small volume corrections to these terms, or equivalently the

small complex-structure corrections to their type IIB mirrors. The terms look like they are

the mirrors to a IIB large-complex structure limit of a term

W
′+′′

IIB = −T e Π . (2.9)

Indeed, in the large complex-structure limit, this is the term induced by the non-geometric

fluxes on the IIB side [19]. Then it is reasonable to conjecture that the full corrections

with respect to the IIA Kahler superfields are included in the full expression for the IIB

complex-structure periods. More crucially, for our analysis in section 3, we consider the

periods on the IIB side to be of the form of the CY periods. In that sense these models

can be thought of as toy models. It could be that introducing the fluxes (2.7) and (2.8)

changes the form of the periods in the superpotential. However we have already seen that

mirror symmetry implies that even non-geometric compactifications still retain CY data in

their superpotential. In the case that the form of the periods does change it is likely that

similar considerations to those presented in section 3 will hold.

There may also be corrections to the superpotential in the IIA complex-structure fields,

which are the IIB Kahler fields, i.e. corrections away from the IIB (IIA) large volume

(complex-structure) limit. However these fields can again be thought of as coming from

a prepotential with electric and magnetic periods. The key point is that only one type of

the periods, say magnetic, appears in the superpotential. Then the fields are exactly the

magnetic periods, which is why they only appear linearly. The complicated form of the

fully corrected prepotential would then show itself if we were to try to write the electric

periods in terms of the superfields, but since these do not appear in the superpotential,

any corrections to the prepotential do not alter the superpotential but only the Kahler

potential.8 This situation can be seen more clearly in a IIB setting where we only have

electric NS fluxes and we move away from the large complex-structure limit. In that case

7Schematically they correspond to a change in the derivative operator so that D(J ∧ J) ∼ ek
h(2,1)+1

Ω
8The explicit situation is quite complicated due to the presence of the orientifold. As shown in [48],

indeed the superfields Uk can be written as derivatives of a prepotential which takes a cubic form in the

large complex-structure limit. In that sense they are like magnetic periods and would take a complicated

form, away from the large complex-structure limit, if we were to try and write them in terms of the electric

periods.

– 9 –



J
H
E
P
1
0
(
2
0
0
7
)
0
1
1

although the prepotential takes a complicated form, the superpotential, which is only linear

in the superfields Ua, is not affected by the corrections.

The metric fluxes ek
a do not have mirrors in IIB that are normal fluxes, i.e. non-

vanishing values for field-strengths. With the exception of the fluxes ek
ã, which are not

essential for our analysis and may be turned off if required, these are the only fluxes in our

set up for which this is the case, all the other fluxes are either themselves normal fluxes

or have mirrors that are. However it has been argued in [49] that they do have normal

flux duals if we consider heterotic string compactifications. In those set-ups they would

correspond to non-vanishing field-strengths for heterotic gauge fields.

To summarise, in this paper we study the following type IIB superpotential

W IIB = (f − φ h − T e) Π . (2.10)

We assume that this is an exact expression up to non-perturbative effects in the Kahler

moduli. This is an assumption which we have tried to justify in this section but it may

be that the superpotential receives further perturbative corrections in which case it would

require further study to see if vacua that are exact with respect to these corrections can be

found. We also have the fully corrected IIA mirror set-up which can be reached by mirror

symmetry. The flux vectors f , h and matrix e have integer entries and we have set the

fluxes that, on some side of the mirror, correspond to highly non-geometric R fluxes to

zero

h0 = ek
0 = 0 . (2.11)

The periods in (2.10) are taken to be of the form of CY periods. The idea is then to use this

to find exact Minkowski solutions to the supersymmetry equations arising from (2.10). We

study the existence of such solutions in the next section. The effects, and existence, of the

possible non-perturbative corrections in the Kahler superfields are discussed in section 4.

2.2 The tadpoles

There are some constraints on the fluxes derived from the absence of tadpoles in the four-

dimensional theory, or equivalently, from the ten-dimensional Bianchi identities. These

were obtained in [18, 19] and read9

f Σ h = Q0 , (f Σ e)k = Qk , (h Σ e)k = 0 , (2.12)

where

Σ =

(

0 1

−1 0

)

. (2.13)

The local charges are given by

IIB : Q0 = 2ND3 − 1

2
NO3 , Qk = 2Nk,D7 − 8Nk,O7 ,

IIA : Q0 = 2ND6
0 − 4NO6

0 , Qk = 2Nk,D6 − 4Nk,O6 , (2.14)

where, for example, Nk,07 denotes the number of O7 planes wrapped on the four-cycle ω̃k.

9Note that the last equation in (2.12) can also pick up localised source contributions from NS5 branes

and from KK monopoles as well as possible non-geometric sources [50]. We do not consider these in this

paper.
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3. Supersymmetric Minkowski vacua

In this section we look for supersymmetric Minkowski vacua to the superpotential (2.10).

We use the full expression for the period vector Π rather than taking the large complex-

structure limit. For now we neglect possible non-perturbative corrections in the Kahler

moduli. We work primarily on the IIB side but the vacua equally apply on the IIA side

under the mirror map. As discussed in section 2, we take the periods to be those of CY

manifolds. They correspond to the periods of the original CY prior to performing one

mirror symmetry, turning on more fluxes in IIA, then performing mirror symmetry again

back to IIB. We note though that taking CY periods is primarily so that we can perform

some explicit calculations and many of the ideas discussed in this section would hold equally

well for a more general form of the periods. We look for solutions to the supersymmetry

equations

∂UaW = ∂Tk
W = ∂φW = W = 0 , (3.1)

where the superpotential is given by (2.10). The equations can be written as

hΠ = 0 , (3.2)

fΠ = 0 , (3.3)

(eΠ)k = 0 , (3.4)

(f − φh − eT ) ∂aΠ = 0 . (3.5)

These form h(1,1) + h(2,1) + 2 complex equations and we have h(1,1) + h(2,1) + 1 superfields

and so in general there are no solutions. However there may be solutions for special values

of the fluxes. For example we may consider solving equations (3.3), (3.4) and (3.5), and

then substituting the solutions into (3.2). This then becomes a constraint equation on the

fluxes which we can try to pick so as to satisfy it. Since the fluxes are quantised, we are not

guaranteed that a solution exists to this constraint. In the large complex-structure limit

the periods are polynomials of the superfields with rational co-efficients, in which case it

is possible to to solve the constraint and these are the solutions found in [19]. However,

in general at some point in moduli space, the periods would take transcendental values so

that for no choice of fluxes can we cancel the terms in (3.2) against each other. Then each

term must vanish by itself for which the only solution is for all the fluxes to vanish. It

may be that for some special values in the complex-structure moduli space the periods take

values that are not transcendental but rather lie in a finite extension over the rationals [7].

This means that they can be written as some linear combination of irrational numbers with

rational co-efficients. For example, the finite extension over the rationals given by numbers

of the form

N = Q1 + Q2

√
3 , (3.6)

where Q1 and Q2 are rational numbers, is denoted Q
[√

3
]

. The dimension D of the

extension is two. More generally we can think of the periods as taking values in some vector

space V whose dimension is the dimension of the extension over the rationals dim V = D.

Then at general points in moduli space all the periods are linearly independent, with respect
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to rational coefficients, and the dimension of this vector space is D = b3 = 2
(

h(2,1) + 1
)

. At

particular points however the dimension may reduce. Then equation (3.2) becomes D < b3

constraint equations but now with rational coefficients multiplying the fluxes. These would

in general have non-zero solutions since there are more fluxes than equations.

We see that the question of how to solve the supersymmetry equations can be answered

by looking for points in moduli space where the periods take values in a vector space which

has dimension less than the number of fluxes in each flux vector (or row of the matrix e).

We will see that there are also other constraints on the values which the periods can take.

In order to understand how to work with the periods in such a way we need to recall their

form.

3.1 The periods for Fermat CYs

We follow here the discussion of [29, 8]. We work with CYs10 that are hyper-surfaces in

weighted projective space, WCP 4
k1k2k3k4k5

, which has weighted homogeneous coordinates

xi ∼ λkixi and degree d =
∑5

i=1 ki. The CY is the vanishing locus of the polynomial

P (xi) = x
d/k1

1 + x
d/k2

2 + x
d/k3

3 + x
d/k4

4 + x
d/k5

5 − dψx1x2x3x4x5 +
h(2,1)−1

∑

a=1

ϕaMa(xi) . (3.7)

This form is valid only if all the ki divide d in which case the CY is called Fermat. This will

be the case for our examples and so, for the purposes of this paper, it suffices to consider

this class only. The fields ψ and ϕa are the complex-structure moduli of the manifold, and

the Ma(xi) are monomials associated with each modulus. The periods for such a CY are

constructed as follows. We define the fundamental period ̟0 through the integration of

the holomorphic three-form over a cycle, which then defines our choice of cycle basis. The

expression for the period reads

̟0 = −
∞
∑

n=1

Γ
(

n
d

)

αn(d−1)/2 (dψ)n−1

Γ (n)Π5
i=2Γ

(

1 − kin
d

) Un (ϕa) ≡
∞
∑

n=1

cnUn (ϕa)ψn−1 . (3.8)

Here α is the dth root of unity. The functions Un (ϕa) are defined so that Un (ϕa = 0) = 1.

We have taken k1 = 1, to simplify things. Consider the polynomial (3.7), we can rotate the

coordinate x1 using α which would leave the first five terms invariant.11 The monomials

are not invariant but can be made so by an appropriate rotation of the moduli. This

monodromy group A ∼ Zd is a subgroup of the full monodromy group on the moduli

space. It acts as

A : ψ → αψ , ϕa → αQaϕa , (3.9)

where, for the case of k1 = 1, the Qa are the powers of x1 in the monomials. The funda-

mental period faithfully represents this group, and so we can generate d − 1 new periods

10We assume that the orientifold projection does not project out the complex-structure moduli that we

consider.
11The coordinate x1 is only singled out for simplicity. More generally there is a monodromy group Zd

which we have chosen to represent through rotations on x1.
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by acting on it with this monodromy group. However not all of these periods will be

independent and, for Fermat models, there will be b3 independent periods

̟J =

∞
∑

n=1

cnαnJUn

(

αQaJϕa
)

ψn−1 ≡
∞
∑

n=1

cn (pn)J (ϕa)ψn−1 , (3.10)

where J = 0, . . . , b3 − 1. The coefficients cn are transcendental and may be irrational,

and therefore if we want to find points where the periods are linearly related we should

truncate the series in n as much as possible.12 We can do this by setting ψ to lie at the

Landau-Ginzburg point

ψ = 0 , (3.11)

which leaves only the n = 1 term as non-vanishing. This simplifies the periods considerably

and will allow us to find exact solutions. We therefore have

̟J (ψ = 0, φa) = c1PJ (φa) , (3.12)

where we denote (p1)J = PJ .

The period vector (2.3) is obtained from the Picard-Fuchs basis ̟J by an appropriate

matrix m with rational coefficients

Π = m̟ . (3.13)

We can therefore write the supersymmetry equations at ψ = 0 as

h̄P = 0 , (3.14)

f̄P = 0 , (3.15)

(ēP )k = 0 , (3.16)
(

f̄ − φh̄ − ēT
)

p2 = 0 , (3.17)
(

f̄ − φh̄ − ēT
)

∂ϕaP = 0 , (3.18)

where we have defined h̄ = hm, f̄ = fm, ē = em. It is these equations that we will attempt

to solve in the upcoming sections for different toy models. These are toy models in the

sense that the complex-structure moduli space will correspond to that of a CY manifold,

and we will keep the number of Kahler moduli as free. This is for practical reasons since it

is only the very simple cases with small numbers of complex-structure moduli that we can

study in detail. There is no reason why the discussions should not hold for larger, more

realistic, numbers of moduli.

The only general constraint is that we can only perturbatively fix at most h(2,1) − 1

Kahler moduli. This follows from the fact that, since the dilaton and Kahler moduli only

appear linearly in the superpotential, they are only constraint by h(2,1) equations [19]. If we

have a larger number of Kahler moduli they can still be fixed but only non-perturbatively.

In the complex-structure moduli sector there are two types of cases; the case where

there is only one complex-structure modulus ψ, and the case of multiple complex-structure

moduli. We consider these cases separately in the upcoming sections.

12The series is not infinite since cn = 0 for n = dl
ki

where l is any positive integer, and for any ki with

i = 2, 3, 4, 5.
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3.2 One complex-structure modulus

In this case all the non-geometric fluxes are switched off on the IIB side and we return

to a CY manifold. On the IIA side however we still have both metric and non-geometric

fluxes and so this provides a non-trivial example of moduli stabilisation in IIA. Although

the manifold is more complicated on the IIA side there is a conceptual advantage, this

is because, with the exception of some exotic Gepner models [51, 22], such a setup could

never fix all the moduli on the IIB side as there must be at least one Kahler modulus

that measures the volume. On the IIA side we simply have no complex-structure moduli,

this is a situation that could easily arise since that are many known examples with a rigid

complex-structure (all nearly Kahler manifolds are for example [38]).

This case was studied on the CY IIB side in [7], we review it here as a warm-up

example. In this case the periods evaluated at the Landau-Ginzburg point become powers

of α. This means that they are element of the cyclotomic group Fd which is the group

generated by the dth roots of unity. Recall that we are interested in how many of the

periods are independent. The cyclotomic group Fd has φ(d) independent elements where

φ(d) is the Euler totient function which is given by the number of integers less than d that

are relatively prime to d. Hence, the periods lie in a vector space V of dimension D = φ(d).

In order to solve the equations (3.14) and (3.15) with non-vanishing fluxes we therefore

require that b3 = 4 > φ(d). This is not satisfied for all the one complex-structure modulus

CYs, but holds for a substantial fraction of them. Once the equations (3.14) and (3.15)

are solved for some choice of fluxes, the remaining equation (3.17), which now has ē = 0,

can be solved for the dilaton. Finally we should impose the single tadpole equation, which

is the first equation in (2.12), on the remaining 8 − 2φ(d) free fluxes.

As an example of such a construction consider the CY manifold, M6 in [7], which is

given by the polynomial13

2x3
1 +

5
∑

i=2

x6
i − 6ψx1x2x3x4x5 = 0 , x ∈ WP 4

[2,1,1,1,1] . (3.19)

We have d = 6 which gives D = φ(6) = 2 < 4 and so we expect non trivial solutions to the

flux equations. Equation (3.15) reads

f̄0 + f̄1α + f̄2α
2 + f̄3α

3 = 0 . (3.20)

Now α = eiπ/3 = 1
2

(

1 + i
√

3
)

which means that α2 = α − 1. This is precisely the relation

which reduced the 6 elements in F6 to only φ(6) = 2 independent elements. Which means

that (3.20) reads
(

f̄0 − f̄2 − f̄3

)

+ α
(

f̄1 + f̄2

)

= 0 . (3.21)

13Actually the CY M6 also has a large number of monomials with other complex-structure moduli,

however, since it is Fermat the mirror polynomial just has all the monomials that are not invariant under

the symmetries of the fundamental monomial (the monomial multiplying ψ) projected out. Therefore the

mirror has one complex-structure modulus and is the actual manifold we work with, however its polynomial

is the same as the original polynomial with all the monomials projected out and so we can just use (3.19).

See for example [7] for discussions on this point.
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This can be solved by constraining f̄0 = f̄2 + f̄3 and f̄1 = −f̄2, leaving two free fluxes. The

same equations hold for the h̄ fluxes. The last supersymmetry equation is solved for

φ =
f̄p2

h̄p2
, (3.22)

which gives

Im φ =
1
2

√
3

[

h̄2

(

f̄2 + f̄3

)

− f̄2

(

h̄2 + h̄3

)]

h̄2
3 + h̄2

2 + h̄2h̄3
. (3.23)

Finally we need to impose the tadpole constraint, and also for the mirror configuration

to remain locally geometric, i.e. with no R fluxes, we require h0 = 0. To impose these

conditions we need to relate the two flux bases which is done be the explicit expression for

the matrix m derived in [52]

(

f̄0, f̄1, f̄2, f̄3

)

= (f0, f1, f2, f3)











−1
3 −1

3
1
3

1
3

0 0 −1 0

−1 0 3 2

0 1 −1 0











. (3.24)

The supersymmetry constraints on the fluxes becomes f1 = 3f2 and f0 = −3f2 − f3, with

the same equations holding for h. In order to impose h0 = 0 we further impose h3 = −3h2.

With all these constraints the tadpole equation reads

−2h2 (f3 − 3f2) = Q0 . (3.25)

We must choose our fluxes to satisfy this constraint. This has an important consequence

for the dilaton which, after imposing the tadpoles, reads

Im φ =
−Q0

28
√

3 (h2)
2 . (3.26)

We therefore see that the dilaton is capped by the orientifold charge and so its value is not

parametrically controlled.

3.2.1 Discrete symmetries

The vanishing of the superpotential can sometimes be attributed to a discrete R symmetry

of the moduli fields [53, 7 – 9]. By this we mean a symmetry that acts on the fields, but

not the fluxes, and leaves the superpotential invariant up to a phase rotation. Then if such

an R symmetry exists the superpotential vanishes at values of the moduli that are at fixed

points of the symmetry. In particular we look for R symmetries that are subgroups of the

monodromy group, which acts on the periods as

AΠ(ψ) = αΠ(αψ) , (3.27)

where A is a matrix representing A. Then consider picking the fluxes so that the flux vectors

are left eigenvectors, with eigenvalues unity, of some power N < d of the monodromy
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matrix14

gAN = g , fAN = f . (3.28)

Using (2.10) we see that

W
(

αNψ
)

= ᾱNW (ψ) . (3.29)

This is an R symmetry, and the LG point is a fixed point of it which forces the superpoten-

tial to vanish. It is possible to check that indeed this is the mechanism at work in the case

studied above. The supersymmetry equations are solved precisely for flux vectors that are

left eigenvectors for N = 4 [7].

This mechanism of forcing the superpotential to vanish through a discrete symmetry

is a powerful one and we shall see can also be applied to the case where there are more

than one complex-structure moduli, to which we now turn.

3.3 Multiple complex-structure moduli

In this section we study the more general situation where there are multiple complex-

structure moduli. It is here that the new terms in the superpotential play a crucial role.

To see this consider turning off all the non-geometric fluxes e = 0. Then the Kahler

moduli remain as perturbatively flat directions. We now concentrate on just the complex-

structure moduli sector. Recall that to solve the equations (3.14) and (3.15) we require

that the periods lie in a vector space of dimension less than b3. As pointed out in [8], for

the case of multiple complex-structure moduli, this can occur either at a some point in

moduli space, as was the case for the one parameter models, or it can occur within a locus

where the ϕa can take any values. We now also have extra equations to solve which are the

F-terms for the complex-structure moduli (3.18). For each modulus, that is a value for a,

the derivatives of the periods ∂ϕaP will form, like the periods, a vector space Va. Again,

for a solution with non-vanishing fluxes, we require the dimension of this vector space to

decrease below b3. Hence to solve the full set of equations we require all the vector spaces

V and Va to reduce in dimension at the same time. This is automatic for the case where

ϕa can take any values, as we outline below. In the case of isolated vacua generically this

is not the case. However at the point ϕa = 0 indeed all the vector spaces reduce to the

dimension of the extension of the cyclotomic fields. We study this possibility in more detail

in section 3.3.2.

We now review the proposition in [8] of how to construct solutions valid for all values

of ϕa. The idea is that in many models the dimension of V reduces for all values of the ϕa.

To see this consider the periods PJ at the LG point ψ = 0

{P0(ϕ
a), P1(ϕ

a), . . . , Pb3−1(ϕ
a)}=

{

P0 (ϕa) , αP0

(

αQaϕa
)

, . . . , αb3−1P0

(

α(b3−1)Qaϕa
)}

,

(3.30)

Now consider some integer N < d which satisfies the periodicity condition

αNQa = 1 ∀a . (3.31)

14The matrix A has only complex eigenvalues and so only powers of it can have eigenvalues of unity. This

is why, for general values of the dilaton, the R symmetry can only be a subgroup of the full monodromy

group. It may be possible to enhance it to the full monodromy group at special values of the dilaton [7, 8].
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Then all the periods with indices J that are multiples of N become αJP0 (ϕa) and so all

lie, up to the overall multiplicative factor of P0 (ϕa), within Fd and so there can only be

at most φ(d) independent ones within this set. Similarly for the rest of the periods, and

the period set becomes periodic in N . Therefore a sufficient, but not necessary, condition

for the dimension of V to reduce is that b3 > Nφ(d). In general this condition is too strict

since not all the elements of Fd need appear in each periodic set. Upon a reduction in the

dimension of the vector space non-trivial flux solutions exist. Note that such a flux solution

holds for all values of ϕa. Now we are left with solving the equations involving ∂ϕaP (3.18),

but the arguments above hold equally for the vector space Va since the derivatives do not

change the periodicities. All of the Va also reduce in dimension and we can solve them as

well. In fact they are automatically solved since, for this construction, the elements of the

Va obey the same linear relationships as the elements of V.

As we saw in the one parameter case it is possible to solve the equations (3.14)

and (3.15) by looking for fluxes that satisfy g = gAN . If this N also satisfies the peri-

odicity condition (3.31) then

gP (ϕa) = αNgP (ϕa) , (3.32)

which implies that gP = 0. This is a discrete R symmetry which imposes the vanishing of

the superpotential. The important point here is that all values of ϕa are fixed points of

the symmetry and so the superpotential vanishes for all values of the ϕa.

Since Ad = 1 the eigenvalues of A are roots of unity. Then for each eigenvalue ak

which satisfies the condition

(ak)
N = 1 , (3.33)

we have an appropriate flux eigenvector which solves the supersymmetry equations and

leads to an R symmetry as above. These eigenvalues are the unfaithful eigenvalues of A

and their number can be determined as outlined in [8].

To summarise, it was shown in [8], that each unfaithful eigenvalue of the monodromy

matrix A represents a flux eigenvector which is a solution to (3.14) and (3.15), and if it also

satisfies the periodicity condition equation (3.18) is automatically solved. Equation (3.17)

is solved by the dilaton.

The solutions discussed above have, by construction, flat directions since they are valid

for all values of ϕa. They also have all the Kahler moduli perturbatively flat. For the rest

of this section we analyse how this situation changes when we turn the non-geometric

fluxes e back on. Two fundamental changes occur following this generalisation. The first

is that the Kahler moduli also appear in the supersymmetry equations and may get fixed

perturbatively. The second is that we can use the Kahler moduli to solve some of the

equations (3.18). In that sense they play the role of the dilaton in the one complex-structure

modulus case. Recall that it is these equations that forced us to look for solutions that are

valid for all values of the ϕa and so with this constraint relaxed we can look for solutions

that are only valid at isolated points in the complex-structure moduli space. Therefore we

see that the two changes imply that we can find scenarios where all the moduli are fixed.

The possible solutions to the equations (3.14), (3.18) depend on the number of Kahler

moduli present. We now discuss the two key scenarios.

– 17 –



J
H
E
P
1
0
(
2
0
0
7
)
0
1
1

3.3.1 Direct solutions: h(1,1) ≥ h(2,1) − 1

In this scenario we have enough Kahler moduli to completely solve the h(2,1) − 1 equa-

tions (3.18). If the inequality is saturated then this fixes all the Kahler moduli perturba-

tively, otherwise they must be fixed non-perturbatively. We can use the dilaton to solve

equation (3.17) leaving the h(1,1) + 2 equations (3.14)–(3.16). We want to find solutions

to these equations that are only valid at one point in the complex-structure moduli space.

Consider equation (3.14). We may attempt to solve this equation directly for the ϕa in

terms of the fluxes. In general it is not guaranteed that such a solution exists within a

physical regime for the ϕa. However we will soon outline a construction where there is

such a solution. If we grant that we have a solution, valid only at some point in moduli

space, then at that point it must be that the dimension of V is reduced. This means that

we can choose the fluxes ē and f̄ so that equations (3.15) and (3.16) are also satisfied at

this point. In general at this point ∂ϕaP 6= 0 which means that the Kahler moduli all get

fixed and so does the dilaton. Hence this leads to a scenario where all the moduli are fixed.

There remain the tadpole equations to impose but these can always be satisfied as long as

there are enough free fluxes left.

We now outline how such a mechanism can work with a toy example. The example

we consider is as follows. We take the complex-structure moduli space of the CY manifold

P[1,1,2,2,2] studied in [29]. This manifold has two complex-structure moduli ψ and ϕ. The

manifold has d = 8, which gives φ(8) = 4, and Q1 = 4. We also consider one Kahler

modulus T . We can therefore solve directly equations (3.17) and (3.18) for φ and T

φ =
f̄ψēϕ − ēψ f̄ϕ

ēϕh̄ψ − h̄ϕēψ
, (3.34)

T =
f̄ϕh̄ψ − h̄ϕf̄ψ

ēϕh̄ψ − h̄ϕēψ
, (3.35)

where we use the notation f̄ϕ = f̄∂ϕP and f̄ψ = f̄p2. Note that the matrix ē is now a

vector since k only takes one value. The tadpoles require that ē, f̄ and h̄ must not be

aligned. To solve the remaining equations consider equation (3.15)

f̄P (ϕ) = f̄0P0 (ϕ) + f̄1αP̃0 (ϕ) + f̄2α
2P0 (ϕ) + f̄3α

3P̃0 (ϕ) + f̄4α
4P0 (ϕ) + f̄5α

5P̃0 (ϕ) = 0 ,

(3.36)

where P̃0 (ϕ) = P0 (−ϕ). This is solved for

αP̃0 (ϕ)

P0 (ϕ)
=

f̄4 − f̄0 − if̄2

f̄1 − f̄5 + if̄3
. (3.37)

Therefore the periods take values in the extension over the rationals Q[i] which is of di-

mension two. In [54] it was shown that (3.37) has solutions with ϕ at physical values for

some choices of fluxes. The solution reads

ϕ2 =
f24(τ)

28
+

28

f24(τ)
+

1

2
, (3.38)
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where f(τ) is the Weber function and τ is defined as

τ = (1 + i)
f̄4 − f̄0 − if̄2

f̄1 − f̄5 + if̄3
− 1 . (3.39)

The solution for ϕ also solves equations (3.14) and (3.16) as long as

f̄4 − f̄0 − if̄2

f̄1 − f̄5 + if̄3
=

h̄4 − h̄0 − ih̄2

h̄1 − h̄5 + ih̄3
=

ē4 − ē0 − iē2

ē1 − ē5 + iē3
. (3.40)

This places four real constraints on the flux vectors h̄ and ē as expected since the dimension

of V has been reduced to two. We therefore have 18−4−2 = 12 free fluxes at our disposal,

where we have set h0 = e0 = 0 to keep only Q fluxes. These should be chosen to solve the

three tadpole equations, and so that ϕ, T and φ take values in a physical regime.

It is difficult to solve explicitly for the moduli in terms of the fluxes, as we did in the one

modulus case, since it is not clear how to eliminate the periods in the expressions (3.34)

and (3.35). This implies that we can not check if the solutions are such that we have

parametric control over all the moduli. In the large complex-structure limit it was shown

in [19] that indeed all the moduli can be parametrically controlled. However the solutions

were controlled by one parameter. This means that they can not apply to the above models

since we have fixed one of the moduli to lie at the LG point and this fixes the controlling

parameter to a small value. The relevant question here is can we keep one modulus small

and parametrically control the others? Since we are unable to solve explicitly for the

dilaton and Kahler modulus we can not fully answer this question.

For the rest of this section we show a much weaker result which is that keeping one

complex-structure modulus at the LG point the other one can be parametrically controlled.

We should keep in mind that it may be that taking the complex-structure modulus large

drives the dilaton and Kahler modulus to small values.15 We first solve generally for the

complex-structure moduli. The basis conversion matrix for this case is given by [29]

m =



















−1 1 0 0 0 0

1 0 1 −1 0 −1
3
2 0 0 0 −1

2 0

1 0 0 0 0 0

−1
4 0 1

2 0 1
4 0

1
4

3
4 −1

2
1
2 −1

4
1
4



















. (3.41)

This gives

U1 =
Z1

Z0
= −1

4
+

1

2
α2 +

1

2
α4 ,

U2 =
Z2

Z0
=

(

1

4
− 1

2
α2 − 1

4
α4

)

+
α̟0 (−ϕ)

̟0 (ϕ)

(

3

4
+

1

2
α2 +

1

4
α4

)

. (3.42)

15A hint that this may not be the case is that in the solutions of [19] it is possible to choose the fluxes such

that one of the complex-structure moduli is fixed at the LG point, whilst the other one is parametrically

controlled. In that case for large values of the controlled complex-structure modulus the Kahler modulus

tends to large values and the dilaton tends to a constant value. However this is only a hint since there are

certainly corrections to that model as one of the complex-structure moduli is small.
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Which in the vacuum gives

Im U1 =
1

2
, (3.43)

Im U2 = −1

2
+

1
2

(f̄1−f̄5)2+f̄2
3

[f̄2(f̄1 − f̄5) − f̄3(f̄4 − f̄0) + (f̄4 − f̄0)(f̄1 − f̄5) − f̄2f̄3] .

Note that one is fixed to a small value corresponding to taking ψ = 0.

Now we must choose the fluxes to solve the supersymmetry equations (3.14)–(3.18) and

the tadpoles (2.12). The most general solution for the fluxes is very complicated. However,

for the purposes of showing parametric control we can look for a simpler particular solution.

This is still too complicated to display here and so we just outline the flux choices. We

take

ē2 = ē3 = ē5 = h̄2 = h̄3 = f̄1 = 0 , f̄2 =
−Q0 + 7f̄3h̄5

4h̄5
. (3.44)

This leaves eleven free fluxes and ensures e0 = h0 = 0. Six are used to solve the three

tadpole equations and the three (real) supersymmetry equations (one equation is satisfied

identically for the choice of fluxes (3.44)). This leaves five free fluxes which in our case are

ē4, f̄3, f̄5, h̄4, h̄5. In terms of these we find

Im U1 =
1

2
,

Im U2 = −1

2
+

ē4

(

2f̄3h̄5 + Q0

)

− h̄4Q1

3h̄4Q1
. (3.45)

The solutions lead to the large complex-structure limit for large ē4, f̄3, h̄5. It can be checked

that taking these large does not imply that any of the fluxes, fixed by the tadpoles and

supersymmetry equations, must be less than one and therefore they could take integer

values.

In section 3.3 we saw that the vanishing of the superpotential in the vacuum can be

associated with the presence of an R-symmetry that is the action of a subgroup of the

monodromy group. In the class of solutions discussed in this section this is generally not

the case. For the example studied, the monodromy group acts as ϕ → −ϕ, which for

general fluxes is not an R-symmetry of the superpotential. For some choice of fluxes,

f̄A2 = f̄ or f̄A4 = f̄ , it leads to the type of R-symmetry discussed in section 3.3.

3.3.2 Special solutions: h(1,1) ≥ number of complex structure moduli for which

α(Qa+1)N = 1

Solutions to (3.14)–(3.16) can also be obtained by fixing the value of the complex-structure

fields to a point where the dimension of V and of the Va all reduce simultaneously, and then

choosing the fluxes to solve the resulting constraint equations. It allows greater freedom

in the number of Kahler moduli required to solve all the equations, but, as discussed in

section 3.4, is statistically less likely than the direct solution of section 3.3.1.

At a point in moduli space where the dimension of V reduces, the dimensions of the

Va will generally not reduce. However at the point ϕa = 0, which we henceforth denote the
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Generalised LG (GLG) point, the dimensions all reduce to that of the extension over the

rationals by the cyclotomic fields. We therefore limit the work in this section to that case

whilst bearing in mind that there may also be other points in moduli space where such a

universal dimensional reduction occurs.

Recall that flux vectors that are left eigenvectors of some power of the monodromy

matrix AN solve the supersymmetry equations (3.14)–(3.16) and lead to a discrete R sym-

metry in the superpotential which forces it to vanishes at the fixed points. The number of

independent such vectors is given by the number of unfaithful eigenvalues of A. If the power

N also satisfies the periodicity condition (3.31) then the supersymmetry equations (3.18)

are also automatically solved and the solutions are valid over all values of ϕa. In order to

find solutions that are only valid at the GLG point we require unfaithful eigenvalues of A

that do not satisfy the periodicity condition. This follows since

fP (ϕa) = fANP (ϕa) = αNfP
(

αNQaϕa
)

. (3.46)

At the GLG point this enforces fP = 0, but not away from it. This constraint fixes all the

moduli that have a Qa which does not satisfy the periodicity condition (3.31). The rest

are left as flat directions.

Now we turn to the equations (3.18). To see if they are solved we can act again with

AN which gives

f∂ϕaP (ϕa) = fAN∂ϕaP (ϕa) = αNαQaNf∂(αQaN ϕa)P
(

αQaNϕa
)

. (3.47)

At the GLG point this vanishes as long as

α(Qa+1)N 6= 1 . (3.48)

Hence all the equations that satisfy (3.48) vanish automatically. The remaining equa-

tions can then be used to fix the Kahler moduli. It would be interesting to find CYs for

which (3.48) is satisfied for all a as these would lead to fully geometric isolated Minkowski

vacua.

The CY P[1,2,3,3,3] is an example that has unfaithful eigenvalues that do not satisfy

the periodicity condition. The CY has three complex-structure moduli. It has d = 12,

Q1 = 4 and Q2 = 8. The period matrix has four unfaithful eigenvalues α2, α3, α9 and

α10. The eigenvalues α3 and α9 are for N = 4. But since NQ1 = 16 and NQ2 = 32 we

see that they do not satisfy the periodicity condition. We also have N (Q1 + 1) = 20 and

N (Q2 + 1) = 36 which implies that f∂ϕ1P = 0 and f∂ϕ2P 6= 0. We therefore require one

Kahler modulus in order to solve the non-vanishing equation. Lets see how this is realised

explicitly. The equation (3.15) reads

(f̄0 − f̄6 + α3f̄3)P (ϕ1, ϕ2)+(−f̄4 + (f̄1 − f̄7)α + f̄4α
2)P ((α2 − 1)ϕ1,−α2ϕ2)

+(−f̄5α + f̄2α
2 + f̄5α

3)P (−α2ϕ1, (α2 − 1)ϕ2) = 0, (3.49)

which at the GLG point reduces to

(

f̄0 − f̄4 − f̄6

)

+
(

f̄1 − f̄5 − f̄7

)

α +
(

f̄2 + f̄4

)

α2 +
(

f̄3 + f̄5

)

α3 = 0 . (3.50)
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This is solved by taking

f̄0 = f̄4 + f̄6 , f̄1 = f̄5 + f̄7 , f̄2 = −f̄4 , f̄3 = −f̄5 , (3.51)

leaving four free fluxes. The same equations hold for the fluxes h̄ and ē.

Examining (3.49), we see that for f̄4, f̄5 6= 0 this solution only holds at the GLG point.

It can be checked that this solution indeed corresponds to the R-symmetry in (3.46)

W
(

α16ϕ1, α32ϕ2
)

= ᾱ4W
(

ϕ1, ϕ2
)

, (3.52)

which has ϕa = 0 as its fixed point. The case f̄4 = f̄5 = 0 corresponds to the faithful

eigenvalues which are periodic. This gives the R symmetry

W
(

ϕ1, ϕ2
)

= −W
(

ϕ1, ϕ2
)

, (3.53)

which has all values of ϕ1 and ϕ2 as its fixed locus. Note that the first R symmetry is

statistically favoured.

Now we turn to the F-terms for the complex-structure moduli (3.18). We have

f̄∂ϕ1P (ϕa = 0) =
(

f̄0 + f̄2 − f̄6

)

+
(

−f̄1 + f̄5 + f̄7

)

α +
(

−f̄2 − f̄4

)

α2 +
(

f̄1 + f̄3 − f̄7

)

α3 ,

(3.54)

which, as expected, vanishes for the flux choices (3.51). We also have

f̄∂ϕ2P = 3f̄4 − 3f̄5α
3 , (3.55)

which does not vanish but rather fixes T . Note that the choice of fluxes so that it is satisfied

independently of T , f̄4 = f̄5 = 0 implies that the ϕa become flat directions. For general

fluxes the solution has all the moduli fixed with ψ = ϕ1 = ϕ2 = 0 and

φ =
ē4

(

f̄5 + f̄6

)

+ αē5f̄7 + α2ē4f̄7 − α3ē5

(

f̄4 + f̄6 + f̄7

)

− e ↔ f

ē4

(

h̄5 + h̄6

)

+ αē5h̄7 + α2ē4h̄7 − α3ē5

(

h̄4 + h̄6 + h̄7

)

− e ↔ h
, (3.56)

T =
f̄4

(

h̄5 + h̄6

)

+ αf̄5h̄7 + α2f̄4h̄7 − α3f̄5

(

h̄4 + h̄6 + h̄7

)

− f ↔ h

ē4

(

h̄5 + h̄6

)

+ αē5h̄7 + α2ē4h̄7 − α3ē5

(

h̄4 + h̄6 + h̄7

)

− e ↔ h
. (3.57)

Unfortunately, since the matrix m relating the Picard-Fuchs basis to the symplectic basis

has not been calculated in this model it is not possible to impose the tadpole relations.

However since we have 10 free flux parameters (where we have set e0 = h0 = 0) many

solutions exist to the three tadpole equations. Since we are fixed at small values for the

complex-structure it is not clear if we retain parametric control over the Kahler modulus

and the dilaton.

3.4 Low energy supersymmetry in the non-geometric landscape

In this section we present some extremely basic vacuum counting. Of course we have

to assume that the non-geometric vacua we have been exploring are indeed legitimate

string vacua. The aim is to show how the arguments for low energy supersymmetry being

rare in the landscape of type IIB CY compactifications with fluxes are modified in these
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scenarios. The key problem in counting vacua within the non-geometric scenarios is that the

fluxes can have ‘flat directions’ in flux space. These are the fluxes that are unconstrained

by the tadpoles and can be taken arbitrarily large. This is in contrast with IIB CY

compactifications where the values of the fluxes are capped by the number of orientifolds.

Then such flat directions mean that the distribution is dominated by large values for that

particular flux [55] which does not amend itself to statistical analysis in a general way. For

comparison however we can consider the number of vacua within a hyperboloid cutoff in

flux space as in the geometric case [56, 57]. We take the same volume scaling so that the

total number of vacua Nvac within the cutoff for large L is given by

Nvac ∼
(√

L
)Mfluxes

, (3.58)

where Mfluxes is the number of fluxes.

The question we want to study is, within a class of compactifications, how common are

vacua preserving low energy supersymmetry through W vanishing perturbatively? This

question was addressed for the IIB CY geometric landscape in a number of papers includ-

ing [53, 7 – 9]. For the generic multiple complex-structure moduli case we can follow the

discussion of [8]. As discussed in section 3.3, the CY must first satisfy the geometric con-

ditions that the monodromy matrix should have unfaithful eigenvalues and that at least

φ(d) should be smaller than Mfluxes = 2b3. For the list of CYs in [8], this does not seem

a particularly strong constraint and decreases the number of vacua only by O (1) factors.

Once we restrict to these CYs we have to impose an R-symmetry. This can be of the form

valid for all values of ϕa as in section 3.3.1, but could also be of the form only valid at

the GLG point as in section 3.3.2. In both cases the number of constraints on the fluxes

is given by the dimension of the vector space spanned by the periods dim V. Hence the

suppression of W = 0 vacua from the total number of vacua is given by

NW=0

Nvac
∼ L−dim V . (3.59)

The important difference between the two types of R-symmetries is that the GLG ϕa = 0

R-symmetry is generally much more common than the R-symmetry for all values of ϕa.

Indeed for the former we always have dim V = φ(d) whilst for the latter φ(d) ≤ dim V ≤ d.

It was argued in [9] that generically for the R-symmetry valid for all ϕa, 2
3d ≤ dim V.

We have seen this in the explicit example of section 3.3.2 where this R-symmetry required

setting f̄2 = f̄3 = f̄4 = f̄5 = 0 on top of the two constraints on f̄0, f̄1, f̄6 and f̄7 thereby

leaving only two out of eight fluxes free. Whilst for the GLG R-symmetry we had only

φ(12) = 4 constraints leaving four out of the eight fluxes free. This difference gets enhanced

as the number of moduli and thereby d grows. Indeed φ(d) is only constrained from below by√
d and so in those cases the enhancement in the number of vacua can be large. We should

note however that the GLG R-symmetries have an the added requirements of unfaithful

eigenvalues that do not satisfy the periodicity condition and do satisfy the condition (3.48).

We now turn to the non-geometric landscape. There are a number of key differences

from the geometric landscape. The first is that the total number of vacua is much larger

Nvac ∼ L
1
2 [4(h

(2,1)+1)+2h(1,1)(h(2,1)+1)] . (3.60)
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Another important difference is that solutions, at least in the large complex-structure large

volume limit, are parametrically controlled [19]. However we do not take this into account

in our analysis. The differences we will explore is that the Kahler superfields appear in

the F-terms for the complex-structure moduli (3.18) and that we have to also solve the

F-terms for the Kahler moduli (3.16). For the purposes of this analysis we assume that all

the Kahler moduli appear perturbatively in the superpotential, i.e. we keep the ek
Λ fluxes

on for all the values of k.

The two types of vacua in sections 3.3.1 and 3.3.2 obey different statistics. Consider

first the R-symmetries vacua of section 3.3.2. We have already discussed its statistics in

the geometric case. The difference here is that the conditions (3.17) are no longer relevant

since we can solve the complex-structure F-terms using the Kahler moduli. However we

now have the h(1,1) equations (3.16) to solve. Therefore the suppression factor is

NW=0

Nvac
∼ L− 1

2(h
(1,1)+2)φ(d) . (3.61)

This behaves in very much the same way as the geometric suppression where although the

suppression grows with the number of moduli, it does so slower than the total number of

vacua so that for large numbers of moduli the number of W = 0 vacua scale like the total

number of vacua.

We now turn to the direct solution vacua of section 3.3.1. In doing this we assume

that the CY has some point in its moduli space where the dimension of V reduces to some

dim V ≡ D < b3. Then the number of vacua is suppressed as

NW=0

Nvac
∼ L− 1

2(h(1,1)−h(2,1)+3)D . (3.62)

This follows since the h(1,1) +2 equations (3.14), (3.15) and (3.18) are in h(2,1)−1 variables

which implies that h(1,1) − h(2,1) + 3 of them must be solved by picking fluxes. Recall that

a condition for these vacua to exist is h(1,1) ≥ h(2,1) − 1. It is not very clear what the

value for D should be for generic numbers of moduli. However it is worth noting that the

suppression factor for these vacua can be relatively small for h(1,1) ∼ h(2,1).

To summarise, within non-geometric compactifications W = 0 vacua are suppressed

compared to the overall number of vacua but not as drastically as in the geometric case.

4. Non-perturbative effects in non-geometric compactifications

In this section we consider non-perturbative effects in the non-geometric compactifications

we have been studying. These effects correspond to branes wrapping cycles which in

non-geometric settings are still to be fully understood. The formalism to describe these

branes is under development [58, 59]. Roughly speaking, in a non-geometric, or generalised

geometric setting, we can think of generalised cycles as being composed of chains of cycles

of even or odd degrees. Then networks of branes of even or odd dimensions can wrap

these cycles. Effectively, however, in terms of the superpotential, we can simply think

of the effects as being induced by the usual geometric branes. The particular effects are
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E3 instantons and gaugino condensation on D7 branes in IIB, which induce terms in the

superpotential that are exponential in the Kahler moduli [45 – 47]. Their mirrors are E2

instantons and gaugino condensation on D6 branes in IIA. The aim of this section is to

study, in parallel, the constraints on the presence of such effects imposed by supergravity

gaugings and by world-volume anomalies. We show that these constraints are compatible

with the presence of non-perturbative effects in the same moduli that appear perturbatively.

We then show that such effects perturb the supersymmetric Minkowski vacua found in

section 3 to supersymmetric AdS vacua but with an exponentially small gravitino mass.

This is the hierarchy generating mechanism that we argued for in the introduction.

We also include a discussion regarding how implementing an intersecting branes sector

may not be compatible with the scenarios in this paper where all the moduli are fixed

perturbatively. This arises if closed string axions are needed to cancel anomoulus U(1)s.

We discuss the flux choices that are needed for the presence of axions in the theory and

the resulting effective KKLT-like theories.

4.1 Supergravity gauging constraints

It is simpler to study these effects in the type IIA set-up. We return to the IIB case later.

We are interested in effects that arise from E2/D6 branes wrapping three-cycles so that

they induce a term in the superpotential of type

W IIA ∼
∑

k

Ak (T a, S) eiakUk , (4.1)

where Ak are some holomorphic functions and the ak are real positive constants. Recall

that before the orientifold truncation the four-dimensional theory is an N = 2 supergravity.

The only way to induce a potential in these supergravities is to gauge isometries in the

manifold formed by the scalar field values. Since the N = 1 superpotential arises as a

truncation of the N = 2 theory it is useful to keep this origin in mind. Let us consider an

example where we have turned off the metric, non-geometric, and RR fluxes. There is a

term in the superpotential given by (2.7) which we reproduce here for convenience

W
′

IIA = −ek
h(2,1)+1

Uk . (4.2)

The origin of this term can be traced back to gauging the shift isometry of one of the

N = 2 scalar superpartners of the νk = Re Uk axions which we denote ν̃k. These fields

come from the expansion of the RR three-form as

C3 = νkβ
k + ν̃kαk + ν0α0 + ν̃0β

0 . (4.3)

Here α0, αk, β0 and βk denote a basis of three-forms. The forms αk and β0 are odd under

the orientifold action and the α0, βk are even. Since C3 is even, the fields ν̃k are projected

out and do not appear in the N = 1 theory. In the N = 2 theory they become gauged

as [60]

Dν̃k = ∂ν̃k − ek
h(2,1)+1

V h(2,1)+1 , (4.4)
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where V h(2,1)+1 is the N = 2 graviphoton and the NS flux is

H = −ek
h(2,1)+1

αk . (4.5)

If non perturbative effects of the form eiν̃k
were present they would break the gauged shift

isometry ν̃k → ν̃k + ak. Therefore supergravity constraints rule out such effects in the

presence of the flux ek
h(2,1)+1

.16 As we have seen this constraint is automatically satisfied

by the orientifold since the fields ν̃k are projected out.

As well as protecting the shift isometry of ν̃k, the flux ek
h(2,1)+1

also breaks the shift

isometries of the νk. However this does not mean that they are protected against non-

perturbative effects. In this case these would be E2-branes wrapping the homological dual

of βk. We see that the orientifold makes sure that the fluxes present no constraints on the

presence of non-perturbative effects in the fields that are left by the orientifold projection.

Consider turning on the NS hh(2,1)+1 and metric ha, ek
a fluxes. These can also be traced

to gauging isometries in the N = 2 theory. They pair up with ek
h(2,1)+1

to form a matrix

eK
A , where K = 0, k, which appears in the gauge derivative as

Dν̃K = ∂ν̃K − eK
A V A , (4.6)

where V A are composed of the graviphoton and the vector in the h(1,1) vector-multiplets

V a. We see that they gauge the same isometries but just with respect to all the gauge fields.

So that they do not impose any further constraints on the presence of non-perturbative

effects.

We also have the non-geometric fluxes hã and ek
ã. It turns out that these also gauge

the same isometries [41]. They act as magnetic charges for the fields ν̃K just as the metric

and NS fluxes acted as electric charges. So in their presence the fields ν̃K are dyons. To

see this we have to dualise the fields ν̃K into two-forms B̃K . This is a procedure developed

in [61, 62] for writing supergravities with dyons. Recall that in four-dimensions a massless

scalar is dual to a massless two-form. Then the non-geometric fluxes act as masses for

the two-forms, which we turn on after dualising. These appear by modifying the gauge

field-strengths FA for the V A as

FA → FA + eK
Ã

BK . (4.7)

The key point is that this procedure can only be performed if we have the shift isometries

in the ν̃K and so these isometries are protected by these fluxes.

To summarise, supergravity gauging imposes constraints on the presence of non-perturbative

effects in general, but we have shown here that the orientifold automatically makes sure

that the isometries gauged by all the fluxes present (including non-geometric fluxes) are

precisely in the fields that are projected out. This guarantees that after the orientifold

16This constraint makes for an interesting no-go theorem for supersymmetric Minkowski vacua from type

II compactifications without orientifolds with all the geometric moduli stabilised. This follows since to

introduce a potential we must gauge an isometry which implies that at least one axion must be massless

and therefore its geometric supersymmetric partner must also be massless.
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projection there are no further constraints from supergravity gaugings on the presence of

non-perturbative effects.

We now turn to explaining the same results in terms of world-volume anomalies on the

branes that give rise to the non-perturbative effects.

4.2 World-volume anomalies

It was shown in [63], using world-volume anomalies, that isometries that are gauged by NS

fluxes are protected against non-perturbative effects that may break them. We now show

that this applies to all the fluxes. For important related discussions which we return to in

section 4.4 see [65, 66].

Consider first the presence of just NS flux (4.5). Then we have argued that non-

perturbative effects that would give rise to a term eiν̃k
, which correspond to branes wrap-

ping the cycle αk, are forbidden. Recall that if a D-brane wraps a cycle with H-flux through

it, the D-brane gauge field, with field strength FD, satisfies the Bianchi Identity

dFD + HNS = 0 . (4.8)

This violates Gauss’ law on the world-volume of the D-brane. We henceforth refer to such

inconsistency as the Freed-Witten (FW) anomaly [64]. Therefore we recover that branes

can not wrap αk since these are precisely the cycles through which there is NS flux.

Now consider turning on the full NS and metric fluxes ek
A. The metric fluxes appear

as parameters of the torsion of the manifold and measure the failure of the basis forms to

be harmonic

dα0 = −haω̃
a , (4.9)

dβk = −e k
a ω̃a ,

dωa = −haβ
0 + e k

a αk .

We argued that these again protect us against the same non-perturbative effects. In the

presence of these fluxes the world-volume Gauss’ law is modified to

dFD + HNS − dJc = 0 , (4.10)

where Jc = −B+iJ = T aωa. We can interpret the new term as the condition that the brane

should wrap a sub-manifold without a boundary, i.e. a cycle [65]. The metric fluxes mean

that the cycles β0 and αk have a boundary and so rule out the non-perturbative effects in

ν̃k because they would correspond to branes wrapping sub-manifolds with boundaries.

We now consider non-geometric fluxes hã and ek
ã. To understand how they feature

we introduce some notation that matches the compactifications studied in [19]. The non-

geometric fluxes arise from the action of a modified derivative operator D, that can be

thought of as covariant derivative for T-dualities and also includes the NS flux, as

Dα0 = hãωa − haω̃
a + hh(2,1)+1ǫ ,

Dβk = ek
ãωa − e k

a ω̃a + ek
h(2,1)+1

ǫ ,

Dωa = −haβ
0 + e k

a αk ,

Dω̃a = −hãβ
0 + e k

ã αk . (4.11)
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In terms of the derivative operator we can propose a neat extension to (4.10)

dFD −DΠev = 0 . (4.12)

Here Πev = eJc which is a combination of zero, two, four and six-forms. It can be thought

of as a pure spinor17 associated with SU(3) × SU(3) compactifications, see [26] for a nice

review. In this way we can interpret the condition as requiring the brane to be wrapped on

a non-geometric ’cycle’. In evaluating (4.12) we should pick out the three-form component

of DΠev. It is simple to check that this is only proportional to β0 and αk. Therefore the

full fluxes only constrain branes wrapped on those cycles and so do not constrain non-

perturbative effects in νk. This matches the supergravity gauging constraints and we can

now clearly see why the orientifold guarantees this. The quantity DΠev has a definite parity

under the orientifold action which is the opposite one to the spinor that gives rise to the

superfields

Πod
c = Sα0 + Ukβ

k . (4.13)

The formulation (4.12) can easily be applied to IIB now since mirror symmetry simply

interchanges the spinors Π for some other spinors Ψ as outlined in [35]. Again the orientifold

parity implies that the fluxes impose no constraints on the presence of non-perturbative

effects which are E3 branes and D7 branes wrapped on four-cycles.

To summarise we argued that we expect non-perturbative effects, in the same fields

that appear perturbatively, to be present in the compactifications.

4.3 The non-perturbative vacuum

We now consider the effect that the non-perturbative corrections to the superpotential have

on the supersymmetric Minkowski vacua of the perturbative superpotential. We assume

the perturbative vacua were at large, and perhaps parametrically controlled, values for the

fields which means we can consider the non-perturbative effect as a small perturbation

of the vacuum. The relevant perturbative parameter is the value of the non-perturbative

part of the superpotential evaluated at the values of the superfields in the perturbative

vacuum. Let us denote the superfields collectively as φi, and their values in the original

perturbative Minkowski vacuum as φ0
i where the index i ranges over the type of superfield.

The perturbative parameter is W NP
∣

∣

φ0
i

= Aeiaφ0
U ≡ r. For a TeV scale gravitino we require

r ∼ 10−13. Such a perturbation can not destabilise the perturbatively stable vacuum (which

had mass matrix eigenvalues of order one) and so there should still be a stable vacuum but

at slightly shifted values of the fields. To see the degree by which the fields shift we write

the scalar potential as

V = V P + V NP , (4.14)

where V NP is a contribution which is induced by the non-perturbative part of the super-

potential, and V P is the original perturbative scalar potential. Now we consider expanding

17Recall that a spinor is equivalent to a set of forms of different degrees that can be generated by acting

on it with anti-symmetric combinations of gamma matrices.
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∂φi
V about the perturbative vacuum

∂φi
V = ∂φi

V P
∣

∣

φ0
m

+∂φj
∂φi

V P
∣

∣

φ0
m

δφj+∂φi
V NP

∣

∣

φ0
m

+∂φj
∂φi

V NP
∣

∣

φ0
m

δφj+O
(

δφ2
)

. (4.15)

In the new minimum this should vanish. The first term on the right hand side vanishes.

The second term is just the mass matrix for the original vacuum which, since we assume

that the original vacuum is perturbatively stable, is non-vanishing. This implies that it

must cancel against terms of order r (or higher powers of r) in the non-perturbative part.

Hence δφ must be at least as small as r up to factors of O(1). We are interested in the

value of the superpotential in the new vacuum W0 and this is given by

W0 = WP |φ0
i
+ WNP |φ0

i
+ ∂WP |φ0

i
O (r) + ∂WNP |φ0

i
O (r) + O

(

r2
)

= WNP |φ0
i
+ O

(

r2
)

∼= r , (4.16)

where we used the fact that in the original supersymmetric Minkowksi vacuum the super-

potential and its derivatives vanished. As expected, given the original perturbatively stable

supersymmetric Minkowski vacuum, we have recovered a vacuum where all the moduli are

stabilised and where the value of the gravitino mass is dynamically small.

We have yet to determine whether supersymmetry is preserved or broken in the per-

turbed vacuum. Since the value of the superpotential is non-vanishing we certainly no

longer have a supersymmetric Minkowski vacuum. To determine further properties of the

vacuum explicitely requires knowledge of the form of the Kahler potential. This is likely

to be a complicated function once warping effects and perturabtive and non-perturbative

corrections, which should be large for these vacua where the manifold is non-geometric and

the fields lie close to the LG point, are included. Further such an analysis would also require

knowledge of the function A which multiplies the non-perturbative effects since, unlike in

KKLT, this can not be integrated out. Therefore actually solving for the F-terms is a task

beyond the scope of this paper. Generically however we would expect that supersymmetry

is preserved in the new vacuum in which case it is AdS. The reason is that the F-terms

now include all the fields and so there are as many equations to solve as there are fields

(non-superysmmetric vacua are usually associated with overconstrained sets of equations).

Also since the fields are only slightly perturbed the new values are still physical.

We should note that the vacuum analysis performed in this section is based on exploring

small perturbations of the original sueprsymmetric Minkowski vacuum and so is not appli-

cable to any vacua, supersymmetric or not, which are far away from the original vacuum.

4.4 Chiral matter

The type of constructions outlined so far in this paper have a low gravitino mass and, if the

constraints on the number of moduli in section 3.3.1 and 3.3.2 are saturated, all the moduli

fixed at the string scale. However eventually we would like to introduce an open string

sector in which we hope to realise the standard model. This could arise from intersecting

D6 or D8 branes in the type IIA case and from magnetised D7-branes or D3 branes on

singularities in type IIB. We will not concern ourselves with the details of these models but
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only in the implications of their presence on the closed string moduli. We will see that most

constructions require us to turn off some fluxes so as to destabilise at least one modulus.

Most of the current constructions of realistic brane models contain anomalous U(1)

gauge fields. In the standard constructions their anomalies are cancelled through the

Green-Schwartz (GS) mechanism. Let us outline how this works Consider turning off all

fluxes and wrapping a D6 brane on the cycle, Ak, dual to the form αk. Now let us also

include some other D6 branes that intersect this D6 brane at angles. The chiral gauge

theory living on the intersection has an anomalous U(1). However, there is a term on the

D6 world-volume which induces a GS coupling

SD6 ⊃
∫

M4×Ak

C5 ∧ FD =

∫

M4

Ck
2 ∧ FD , (4.17)

where C5 is the RR five-form which we expand as C5 = Ck
2 αk and FD is the field strength

of the world-volume gauge field. The four-dimensional tensors Ck
2 are dual to the RR

axions νk. Then the GS mechanism means that the anomalous U(1) eats the axion and

becomes massive, turning into a global symmetry in the low energy effective theory.

The essential problem is that this requires the νk to be massless while generically they

will be massive from the fluxes. This implies we have to turn off some fluxes which we

study in section 4.4.1.

Before proceeding it is worth mentioning that requiring axions from the closed string

sector is a model dependent effect. It is possible that the axions could come from a

different sector such as twisted states as occurs for D3 branes on singularities [69]. Also

brane networks, which are natural in non-geometry could be promising future avenues [58].

Therefore, although we present a brief outline of the consequences of such axions in the

closed string sector we should keep in mind that their presence is not certain.

4.4.1 Axions and fluxes

In this section we study the constraints on the fluxes imposed by requiring flat directions to

cancel the U(1) anomalies. The axion shift symmetry could be a full symmetry of the action

or it could be an enhanced symmetry of the vacuum. This distinction is generally important

in determining the constraints on the fluxes. The vacuum symmetry is less strict than the

full symmetry in terms of having to switch off fluxes. In particular it means that in AdS it is

possible to fix the geometric moduli and leave flat axionic directions in the vacuum [25]. It

is possible that this situation could also arise in a non-supersymmetric vacuum. However, it

was argued in [65] that the gauge invariance should be at the action level. For our purposes

there is little practical difference since we are studying supersymmetric Minkowski vacua

which means that any flat axionic directions in the vacuum imply a massless geometric

superpartner. This means that with regards to finding fully stabilised vacua we might as

well impose the axionic symmetry as a symmetry of the action. This is the approach we

take in this section.

In IIA the candidate axion fields are the real part of the superfields arising from (4.13).

In the purely geometric case, with no H-flux, the constraint on them being axions is that

the forms they are expanded in are closed. Let us denote a linear combination, labelled by

– 30 –



J
H
E
P
1
0
(
2
0
0
7
)
0
1
1

i, of Re S and Re Uk by a vector A
(i)
K , where we use the index notation as in sections 2.1

and 4.1. The entries of A
(i)
K correspond to which axions appear in the linear combination.

Then the constraint on being closed reads

d
(

A
(i)
0 α0 + A

(i)
k βk

)

= 0 , (4.18)

which can be written as

e K
a A

(i)
K =

(

eA(i)
)

a
= 0 . (4.19)

If we also turn on the H flux and the non-geometric fluxes this generalises to

e K
Λ A

(i)
K =

(

eA(i)
)

Λ
= 0 . (4.20)

Recall that in IIA the index Λ runs over the even forms and has dimension 2
(

h(1,1) + 1
)

.

We see that, for general fluxes, out of the possible h(2,1) + 1 axions 2
(

h(1,1) + 1
)

get fixed.

Note that in a supersymmetric Minkowski vacuum, as argued in section 3.1, there is an

enhanced symmetry in the vacuum which implies that only h(1,1) + 1 axions get fixed. If

2
(

h(1,1) + 1
)

> h(2,1) + 1 then we have to turn off a row of fluxes in the matrix e for each

unfixed axion we require.

To summarise, for our models, the presence of axions requires that the fluxes and

number of moduli are such that some superfields do not appear in the perturbative super-

potential.

It is worth noting that the world-volume anomaly constraint (4.12) and the unfixed

axion constraint (4.20) are the same if we impose them at the action level, i.e. for all

values of the T a, but differ if we impose them at the vacuum level. Indeed in a Minkowski

vacuum (4.12) is always satisfied but in general there are no axions.

4.4.2 Generalised KKLT

The problem discussed above implies that it could be that in order to include chiral D6

branes we should have another sector to the theory with perturbatively massless super-

fields.18 The real parts of these superfields will now be proper axions with shift symmetries

and these can be used to cancel the anomalies on the brane world-volume. Although the

new superfields do not appear in the superpotential perturbatively they can appear non-

perturbatively through E2/D6 brane effects.19

The resulting closed string sector resembles KKLT constructions in the sense that

we have a sector of moduli that are fixed perturbatively and a sector that is fixed non-

perturbatively. Although we have discussed these constraints in the type IIA framework,

18Note that forcing the corresponding fluxes to vanish so that these fields to not appear perturbatively

in the superpotential is very costly in terms of the landscape. If constructions were found where standard

model like sectors could be realised without needing axions to cancel anomalies they would be statistically

favoured.
19Non-perturbative effects break the shift symmetries of the axions to integers. However, in the presence

of a chiral open string sector the open string fields appear in the superpotential in such a way to restore

the full gauge invariance under shifts so that the actual axions that participates in the GS mechanism is a

combination of the closed string axion and the open string fields [65 – 68].
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they apply equally to type IIB setups where again we require axions to cancel anomalies on

magnetised D7 branes. Therefore, for concreteness, we henceforth use type IIB notation.

Combining the superpotentials of the previous two sections, the type of setups that arise

are schematically of the form

W IIB (S,U, T1, T2) = W P (S,U, T2) + B (S,U) eibT2 + A (S,U) eiaT1 . (4.21)

The real part of the field T1 is an axion that can participate in the anomaly cancellation.

The key point is that it does not appear in the perturbative superpotential W P (S,U, T2).

We are interested in the vacua where T2 is stabilised perturbatively at some large value

in a W P = 0 vacuum. Then, as discussed in the previous section, introducing the second

term in (4.21) leads to an AdS vacuum with W ∼ BeibT2 ≡ δ. Since the fields S,U and

T2 all appear perturbatively in the superpotential their masses will be of order the string

scale. While the field T1 only appears non-perturbatively and so we expect it to be nearer

the gravitino mass. Indeed, by diagonalising the mass matrix it is possible to show that

the mass of T1 is of order ln
(

Mp/m3/2

)

m3/2 up to order one factors induced by mixing

with the superfield T2. If we integrate out the string scale fields, by replacing them with

their values as given by the perturbative part of the superpotential, we are left with an

effective KKLT-like superpotential

W IIB = W0 + AeiaT1 , (4.22)

where W0 ∼ δ. Then T1 will be fixed such that AeiaT1 ∼ δ and so its mass will be much

lower than the string scale for a hierarchically small δ making the approximation of the

effective theory valid.

There are some differences between the above constructions and the original KKLT

ones. The moduli that are stabilised non-perturbatively are not decoupled in the Kahler

potential from the perturbatively fixed ones. In the KKLT scenario, up to loop effects [70],

the complex-structure moduli are decoupled from the Kahler moduli in the Kahler potential

and this effect is absent. In these scenarios integrating out some of the Kahler/complex-

structure moduli while leaving others leads to non-canonical effective Kahler potentials for

those moduli. Such effects may be relevant for supersymmetry breaking through corrections

to the Kahler potentials. Another difference is that in the above constructions we could

have parametric control over the vacuum values for the moduli. Indeed for the toy example

studied in section 3.3.1, we could show that was the case for at least the complex-structure

moduli. This control is important in generating small parametric hierarchies. These include

usual ones between the string and KK scale and the moduli masses. But may also include

a mass hierarchy between the non-perturbatively fixed moduli, T1 in the example above,

and the gravitino mass. This could be useful in avoiding light moduli and their associated

problems. Finally these vacua do not suffer from the KKLT stability issues as studied

in [71] since the vacuum is a perturbed supersymmetric Minkowski vacuum which is stable.

Apart from the effects discussed above, the moduli stabilisation scheme is the same as that

of KKLT.
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5. Supersymmetry breaking

Obtaining a dynamically low gravitino mass allows for the possibility of a low scale of

supersymmetry breaking. So far supersymmetry has been preserved and so we need to

include new effects to break supersymmetry. In this section we do not present new methods

for this but study how some of the current suggestions can be implemented within the

framework of this paper. A natural requirement is that these mechanisms also uplift the

now AdS vacua back up to Minkowski vacua.

The main issue in breaking supersymmetry within these models is how to keep the

supersymmetry breaking effects to a dynamically low scale so that the low gravitino mass is

not washed out. This is automatic if, as discussed in section 4.3, once the non-perturabtive

effects are introduced, the new perturbed vacuum is non-supersymmetric. Such a set-up is

likely to rely on corrections to the Kahler potential as in [72, 73].

Another possibility is to include, in IIB, anti D3 branes in a warped region as in the

original KKLT scenario [2]. These break supersymmetry at a scale suppressed by the warp

factor at their location. Therefore by picking the warp factor to be of order the gravitino

mass such effects do not wash out the low scale. This is an example of balancing out two

dynamically generated scales which features in all the upcoming constructions.

A manifestly supersymmetric version of the anti brane mechanism is D-term supersym-

metry breaking induced by brane world-volume fluxes [74]. Since the D-term is generated

by one of the axions getting charged we require, as in section 4.4, that the axion shifts

remain a symmetry and so they should not appear perturbatively in the superpotential.

However in both IIA and IIB settings they can appear non-perturbatively through E2 and

E3 branes and through gaugino condensation on D6 and D7 branes. This allows for their

real parts to be fixed along with the uplift. Such scenarios were studied in [68] within a

type IIB context, but can equally be realised in a type IIA mirror setup with D6 branes

taking the role of the D7 branes. These models of D-term uplifting can be separated into

two classes. Those where the charges of the open string sector are not all the same sign,

and those where they are all of the same sign. The former models, to which all the explicit

examples belong, have the property that the open string fields can adjust their values to

make the D-terms vanish.20 The second class of models is where all the fields have the

same sign. In that case the fields can not cancel and the D-terms are of order M4
p and

so they wash out the dynamically low gravitino mass minimum. However, as pointed out

in [68], the D-terms can be suppressed by warping effects by placing the D-branes in a

highly warped region. In that case the warping can be chosen to lower the D-term scale

to that of the gravitino mass scale. Note that the warping suppression is only really well

understood in the IIB.

Metastable vacua. It is also possible to break supersymmetry in a metastable vacuum

of an open string sector along the lines of ISS [75]. Concrete realisations of an appropriate

20This can be avoided to some extent by not including one of the fields in the superpotential as in section

3.2 of [68]. With this mechanism however the D-terms scale as D2
∼ m4

3/2 and so can not uplift the negative

m2
3/2M

2
p cosmological constant.
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gauge theory that contains a metastable vacuum within compactifications of string theory

have yet to be constructed. For some recent attempts see [76]. We can highlight the

important features that are relevant for the non-geometric vacua we have been studying

through a toy model. Consider the following theory that corresponds to adding an ISS

sector to the closed string sector of the previous sections

K = KT
(

T1, T̄1, T2, T̄2

)

+ KS
(

S, S̄
)

+ KU
(

U, Ū
)

+ |ϕ|2 + |ϕ̃|2 + |Φ|2 ,

W = W P (U,S, T1, T2) + hTr ϕ̃Φϕ − hmAeiaT1Tr Φ + BeibT2; . (5.1)

Here the open string sector which will be responsible for triggering supersymmetry breaking

is given by an SU (n) gauge theory which in the magnetic description has a description in

terms of the degrees of freedom ϕa
i , ϕ̃a

i , Φi
j where a is a colour index a = 1, . . . , n and i is

a flavour index i = 1, . . . , Nf . In terms of the electric theory the ϕ are related to Baryons

and Φ to Mesons and the magnetic gauge group SU(n) is related to the electric gauge

group SU(Nc) through n = Nf − Nc. The magnetic theory has a perturbative description

in the free magnetic range Nf > 3n. The strong dynamics energy scale of the magnetic

theory Λ is the same as that of the electric theory and is given by
∣

∣AeiaT1
∣

∣. The parameter

m is a small m ≪ Λ mass term introduced for the quarks. For possible ideas as to the

origin of such a small parameter see [77] where it can also be realised dynamically. The

closed string sector is composed of two Kahler moduli T1, T2, the dilaton S and some set

of complex-structure moduli U . Note that in the toy model we have taken the modular

weight of the open string fields to be zero.

This corresponds to realising the ISS sector on a D7 brane setup where the (inverse

squared) gauge coupling is given by Im T1. A mirror IIA construction would have a D6

brane realisation. We may also realise such a model by replacing T1 with the dilaton S

which is related to the gauge coupling of D3 branes [78]. Either way there is an important

point to raise here. Such theories may or may not be anomalous with mixed anomalies

that may need to be cancelled through the GS mechanism as described in section 4.4. We

have already argued that in that case the modulus can not appear perturbatively in the

superpotential. Hence a model such as (5.1) where the gauge coupling modulus appears

perturbatively requires a realisation of the gauge sector which is anomaly free in that

sense. This could arise for example from non-chiral constructions such as in [79]. With

this assumption made clear we proceed to study the vacuum structure of this model.

We can now integrate out all the string scale moduli that appear perturbatively by

replacing them with values as fixed by W P . This leaves an effective low energy theory

K = −2ln V0 + |ϕ|2 + |ϕ̃|2 + |Φ|2 ,

W = W0 + hTr ϕ̃Φϕ − hµ2Tr Φ , (5.2)

where V0 is the volume of the manifold in the vacuum and µ2 =
〈

mAeiaT1
〉

. Note that

both W0 and µ are dynamically generated and so can naturally take small values. It is

simple to show, see [78], that the W0 term in the superpotential and the ISS theory of the

last two terms decouple as long as µ is small and W0 ∼ µ2. In that case we find a scalar
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potential

V =
1

V2
0

[(

|∂ϕW |2 + |∂ϕ̃W |2 + |∂ΦW |2
)

− 3 |W0|2
]

+ O
(

µ5
)

, (5.3)

Then it was shown in [75] that the first term in (5.3) has a metastable minimum at

Φ0 = 0 , ϕ0 = ϕ̃T
0 =

(

µIn

0

)

, (5.4)

where In is the n × n identity matrix. In this vacuum we get

V =
1

V2
0

[

(Nf − n)h2µ4 − 3 |W0|2
]

+ O
(

µ5
)

. (5.5)

Then W0 acts as an effective cosmological constant which can be tuned to cancel the first

term. This requires W0 ∼ µ2 as assumed in deriving the effective theory. This produces

a non-supersymmetric vacuum with m 3
2
∼ W0 which requires W0 ∼ µ2 ∼ 10−13 for TeV

supersymmetry breaking.

A similar scenario was studied in [78] where they considered the ISS theory to be

realised on D3 branes and fixed the dilaton perturbatively using normal fluxes. We see

that non-geometric fluxes allow us to also realise the gauge theory on D6 or D7 branes.

6. Summary

In this paper we studied some of the issues related to the introduction of non-geometric

fluxes. We studied models that are completely mirror symmetric and so the results apply to

IIA and IIB. Using toy models based on CY data we were able to show that perturbatively

exact supersymmetric Minkowski vacua with all the moduli stabilised can be found. These

can arise with or without an associated R-symmetry. In both cases the vacua are not as

rare as in the geometric landscape. We also showed that at least the complex-structure

moduli could be parametrically controlled in these vacua, but were unable to show that

this holds for all the moduli.

We went on to show that the orientifold projection guarantees that non-perturbative

effects in the same fields that appear perturbatively are consistent with supergravity gaug-

ing and world-volume anomaly constraints. These effects perturbed the supersymmetric

Minkowski vacua to vacua with an exponentially small gravitino mass. This forms a con-

crete realisation of a dynamically low gravitino mass. The resulting vacua should generically

be supersymmetric AdS but, given a lack of explicit knowledge of the Kahler potential and

non-perturbative superpotential, no explicit solutions were presented.

The current constructions of chiral theories on intersecting branes require axions from

the closed string sector. The implementation of such axions within the non-geometric

constructions required switching off the fluxes associated with the cycle that the brane

wraps. These lead to a generalised KKLT scenario where the moduli are split into a sector

that is fixed perturbatively and a sector that is fixed non-perturbatively but with both

sectors generally consisting of a mixture of complex-structure and Kahler moduli.
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We discussed ways to break supersymmetry that preserve the hierarchically small

gravitino mass and in particular showed that metastable vacua were complimented by

non-geometric fluxes. The fluxes allowed for realisations of the gauge sector on D6 and D7

branes as opposed to just D3 branes.

If we do not require axions, then all the moduli can be fixed at a high string scale.

This has a number advantages. It is particularly suited to realising gauge mediated super-

symmetry breaking without a light moduli problem [80 – 82]. Also it could be important

in realising inflation scenarios with a large amount of tensor modes. This follows since

these are scenarios where, although the gravitino mass is at the TeV scale, the barrier from

the minimum to the runaway vacuum is at the high string scale since the original vacuum

was perturbative. This provides a solution to the problem pointed out in [83] where the

vacuum is destabilised if the Hubble constant is too large during inflation.

Perhaps the most relevant future directions within non-geometric compactifications

are finding explicit examples of manifolds and constructing realistic D-branes sectors. In

particular it would be nice to find models that do not require closed string axions to cancel

anomalies as the destabilisation of the moduli this implies seems unnatural.

This paper studied constructions that can be described equally in IIA or IIB. There

should also be dual constructions in the heterotic strings perhaps compactified on S-folds.

On a more general level it would be nice to be able to study the low energy phenomenology

of M-theory independently of which corner we work in. Perhaps this will lead to generic

predictions from the full landscape.
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